A novel multiplicative neural network architecture motivated by spiking neuron model

نویسندگان

  • DEEPAK MISHRA
  • ABHISHEK YADAV
  • PREM K. KALRA
چکیده

In this paper, learning algorithm for a multiplicative neural network motivated by spiking neuron model (MSN) is proposed and tested for various applications where a multilayer perceptron (MLP) neural network is conventionally used. It is observed that the inclusion of a few more biological phenomena in the formulation of artificial neural network models make them more prevailing. Several benchmark and real-life problems of classification and function-approximation are illustrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Artificial Neural Network Type Learning with Single Multiplicative Spiking Neuron

In this paper, learning algorithm for a single multiplicative spiking neuron (MSN) is proposed and tested for various applications where a multilayer perceptron (MLP) neural network is conventionally used. It is found that a single MSN is sufficient for the applications that require a number of neurons in different hidden layers of a conventional neural network. Several benchmark and real-life ...

متن کامل

MASPINN: Novel Concepts for a Neuro-Accelerator for Spiking Neural Networks

We present the basic architecture of a Memory Optimized Accelerator for Spiking Neural Networks (MASPINN). The accelerator architecture exploits two novel concepts for an efficient computation of spiking neural networks: weight caching and a compressed memory organization. These concepts allow a further parallelization in processing and reduce bandwidth requirements on accelerator’s components....

متن کامل

Efficient Spike-Coding with Multiplicative Adaptation in a Spike Response Model

Neural adaptation underlies the ability of neurons to maximize encoded information over a wide dynamic range of input stimuli. Recent spiking neuron models like the adaptive Spike Response Model implement adaptation as additive fixed-size fast spike-triggered threshold dynamics and slow spike-triggered currents. Such adaptation accurately models neural spiking behavior over a limited dynamic in...

متن کامل

Simplified spiking neural network architecture and STDP learning algorithm applied to image classification

Spiking neural networks (SNN) have gained popularity in embedded applications such as robotics and computer vision. The main advantages of SNN are the temporal plasticity, ease of use in neural interface circuits and reduced computation complexity. SNN have been successfully used for image classification. They provide a model for the mammalian visual cortex, image segmentation and pattern recog...

متن کامل

Nonlinear multiplicative dendritic integration in neuron and network models

Neurons receive inputs from thousands of synapses distributed across dendritic trees of complex morphology. It is known that dendritic integration of excitatory and inhibitory synapses can be highly non-linear in reality and can heavily depend on the exact location and spatial arrangement of inhibitory and excitatory synapses on the dendrite. Despite this known fact, most neuron models used in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005